

The Cell Cycle Switch Computes Approximate Majority

- Luca Cardelli, Microsoft Research & Oxford University
- Joint work with Attila Csikász-Nagy, Fondazione Edmund Mach & King's College London
- St Andrews Distinguished Lectures Series, 2014-11-25

Cells Compute

- No survival without computation!
 - Finding food
 - Avoiding predators
- How do they compute?
 - Clearly doing "information processing"
 - But can we actually catch nature running an (optimal) *algorithm*?
- MAPKKK = MAP Kinase Kinase Kinase = that which operates on that which operates on that which operates on protein.

Outline

- Analyzing biomolecular networks
 - $\cdot\,$ Try do understand the function of a network
 - $\cdot\,$ But also try to understand its structure, and what determines it

• The Cell-Cycle Switches

- \cdot Some of the best studied molecular networks
- Important because of their fundamental function (cell division) and the stability of the network across evolution

• We ask:

- What does the cell cycles switch compute?
- How does it compute it?

How to Build a Good Switch

• What is a "good" switch?

- We need first a **bistable** system: one that has two *distinct* and *stable* states. I.e., given any initial state the system must settle into one of two states
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back)
- \cdot Finally, we need to be able to flip the switch by external inputs
- "Population protocol" switches
 - Identical agents ('molecules') in a population start in some state, say x or y
 - A pair of agents is chosen randomly at each step, they interact ('collide') and change state
 - The whole population must eventually agree on a majority value (all-x or all-y) with probability 1

A Bad Algorithm

- Direct Competition
 - \cdot x catalyzes the transformation of y into x
 - $\cdot\,$ y catalyzes the transformation of x into y
 - \cdot when all-x or all-y, it stops

This system has two end states, but

- Convergence to an end state is slow (a random walk)
- Any perturbation of an end state can start a random walk to the other end state (hence not really *bistable*)

A Biological Implementation

Approximate Majority (AM)

Bistable Even when x=y (stochastically)

Fast O(log n) convergence time

Robust to perturbation above a threshold, initial majority wins *whp*

Dana Angluin · James Aspnes · David Eisenstat

A Simple Population Protocol for Fast Robust Approximate Majority

Epigenetic Switch

Figure 1. Basic Ingredients of the Model

Theory	Cell
Theoretical Analysis of Epigenetic Cell Memory by Nucleosome Modif	ication
Ian B, Dodd, ^{1,3} Mille A, Micheelsen, ¹ Kom Sneppen, ¹ r and Geneviève Thos ³ ¹ center tre Models of Link, Nals Borr Issittas, Bingdamwei 17, 20: 2100, Oppintugen B, Bernard , Marchael K, Standard M, Santa M,	Jia mhagen N. Denmark

Back to Biology

- The AM algorithm has ideal properties for settling a population into one of two states
- Seems like this would be useful in Biology
 - Can we find biological implementations of this algorithm?
 - Could it be related to the cell cycle switch?

The Reinitz Model of Influence

- Based on early connectionist (neural network) modeling
 - Each activation/inhibition interaction is modeled as a flexible sigmoid function with 4+ parameters per node

Functional Motifs in Biochemical Reaction Networks

$$\frac{\mathrm{d}X_i}{\mathrm{d}t} = \gamma_i \frac{[A_i(1-X_i) - B_i X_i]}{A_i + B_i}, \quad i = 1, \dots, N,$$

$$A_i = \exp\left\{\sigma_i \left(\alpha_{i0} + \sum_{j=1}^N \alpha_{ij} X_j\right)\right\}, \quad B_i = \exp\left\{\sigma_i \left(\beta_{i0} + \sum_{j=1}^N \beta_{ij} X_j\right)\right\},$$
(4)

- We prefer to stick to mass action kinetics
 - It will later become clear why
- We model activation/inhibition nodes by a mass action motif:
 - Using 4 rate parameters per node
 - Akin to multisite modification

Influence Network Duality

• Let $\sim x$ be the species such that

 $(\sim x)_0 = x_{2'}$ $(\sim x)_1 = x_1$, $(\sim x)_2 = x_0$

so that promoting x is the same as inhibiting ~x etc. Then:

Natural Constraint #1

• Direct autocatalysis is not commonly seen in nature

$$\begin{aligned} \mathbf{x}_1 + \mathbf{x}_0 &\to \mathbf{x}_0 + \mathbf{x}_0 \\ \mathbf{x}_1 + \mathbf{x}_2 &\to \mathbf{x}_2 + \mathbf{x}_2 \end{aligned}$$

Natural Constraint #2

- x_0 and x_2 (usually two states of the same molecule) are both active catalysts in that network
- That is not commonly seen in nature

- Remove the catalytic activity of x_2
 - $\cdot\,$ By "flipping the z feedback to the other side"

(x₂ promotes z_0 via s bias, z₀ promotes x₂ via inhibiting x₀)

(x₀ promotes r₀, promotes x₀)

- All species now have one active (x_0, z_0, r_0) and one inactive (x_2, z_2, r_2) form
- This is 'biochmically plausible'

27

Done

• ... and that is the cell-cycle switch!

- But did we preserve the AM function through our network transformations?
- Ideally: prove either that the networks are 'contextually equivalent' or that the transformations are 'correct'
- Practically: compare their 'typical' behavior

The "classical" Cell Cycle Switch CC approximates AM performance

CC converges in O(log n) time (like AM) (but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions $(x_0=x_1=x_2)$

Black lines: high-count stochastic simulation traces Color: full probability distribution of low-count system

Hor axis is time.

AM shows hysteresis (like CC)

Black lines: deterministic ODE bifurcation diagrams Red lines: medium-count stochastic simulations Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards x₀ against fixed bias.

There is an *obvious* bug in CC performance!

31

Evidence that CC is 'similar' to AM

• But there is a difference

- $\cdot\,$ The classical cell cycle switch, CC, works ok but never as well as AM
- The output of CC does not go 'fully on':

- $\cdot\,$ Because s continuously inhibits x through z, so that x cannot fully express
- Engineering question: could we fix it? (Yes: let x inhibit s and t)
- Q: Why didn't nature fix it?

Nature fixed it!

- There is another known feedback loop
 - \cdot By which x suppresses s "in retaliation" via the so-called Greatwall loop
 - $\cdot\,$ Also, s and t happen to be the same molecule (=s)

• s and x now are antagonists: they are the two halves of the switch, mutually inhibiting each other (through intermediaries).

More surprisingly

- Makes it faster too!
 - The extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Conclusion (in our published paper): Nature is trying as hard as it can to implement an AM-class algorithm!

The "classical" cell cycle switch seems to be only half of the picture: the extra feedback completes it *algorithmically*.

The Argument So Far

- Relating dynamical and computational systems in isolation (as closed systems)
 - The AM algorithm (network) implements an input-driven switching function (in addition to the known majority function).
 - The CC algorithm implements a input-less majority function (in addition to the known switching function).
 - The structures of AM and CC are related, and an intermediate network shares some properties of both.

• But what about the context?

- Will AM and CC behave similarly in any context (as open systems)?
- That's a hard question, so we look at their intended context: implementing oscillators.
- Also, oscillators are almost the 'worst case' contexts: very sensitive to component behavior.

Oscillators

- Basic in Physics, studied by simple *phenomenological* (not structural) ODE models.
- Non-trivial in Chemistry: it was only discovered in the 20's (Lotka) that chemical systems can (theoretically) oscillate: before, oscillation was thought impossible. Shown experimentally only in the 50's.
- Mechanics (since antiquity) and modern Electronics (as well as Chemistry) must engineer the *network structure* of oscillators.
- Biology: all natural cycles are oscillators. Here we must reverse engineer their network structure.
- Computing: how can populations of agents (read: molecules) interact (network) to achieve oscillations?

Cell Cycle Oscillator

- The cell cycle switch is part of an oscillator network
 - The cell cycle oscillation: grow-divide-grow-divide...
- The principle of the oscillator
 - Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches
 - In a Trammel of Archimedes configuration (gray rates < black rates)
 - (The biological network lacks some of these links and still oscillates)

The Trammel of Archimedes

• A device to draw ellipses

- Two interconnected switches.
- When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips the first switch off (on).
- The amplitude is kept constant by mechanical constraints.

The Shishi Odoshi

- A Japanese scarecrow (*lit.* scare-deer)
 - Used by Bela Novak to illustrate the cell cycle switch.

empty + up \rightarrow up + full up + full \rightarrow full + dn full + dn \rightarrow dn + empty dn + empty \rightarrow empty + up

http://www.youtube.com/watch?v=VbvecTlftcE&NR=1&feature=fvwp

Outer switched connections replaced by constant influxes: tap water and gravity.

Contextual Analysis

• AM switches in the context of oscillators

Trammel of Archimedes

A new cell cycle switch candidate: GW

• Will it work in the normally-wired oscillator?

- Absolutely not! ☺
 - The x stable state is just too strong: a high x will shut down s completely; which means that r will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give enough control on that situation.

However this will

• Put s under control of y so it can undermine x

Robust full-on oscillation with all-default parameters (all black rates 1.0, all gray rates 0.5, all initial quantities equal)

Suggests a new problem

- What is the 'proper' way to wire-in a replacement circuit?
- There is an answer (given by a study of network morphisms)

But what about network equivalence?

• Our evidence is empirical

- Although quantitative and covering both kinetic and steady state behavior
- Also, contextual equivalence holds in the context of oscillators (see paper)
- Analytical evidence is harder to obtain
 - The proof techniques for the AM algorithm are hard and do not generalize easily to more complex networks
 - Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are still lacking (although rich qualitative theories exist)

Summary

- The structure of AM implements an input-driven switching function (in addition to the known majority function).
- The structure of CC/GW implements a input-less majority function (in addition to the known switching function).
- The structures of AM and CC/GW are related, and an intermediate network shares the properties of both.
- The behaviors of AM and CC/GW in isolation are related.
- The behaviors of AM and CC/GW in oscillator contexts are related.
- A refinement (GW) of the core CC network, known to occur in nature, improves switching performance and brings it in line with AM performance.